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Vector Variational Formulation of
Electromagnetic Fields in

Anisotropic Media
A. KONRAD, MEMBBR, IEEE

Abstract—Maxwell’s equations can be cast into a basic differential

operator equation, the cmlcarl equation, which lends itself easily to
variational treatment. Various forms of this equation are associated

with problems of practical importance. The formulation includes the
treatment of loss-free anisotropic media. The boundary conditions

associated with electromagnetic-field problems are treated in detail and

the uniqueness of the solution is discussed. A functional is derived for

the eurleurl equation in Cartesian aad cylindrical coordinates.

I. INTRODUCTION

D

UE TO the broad variety of practical applications

of waveguides, resonators, and other microwave

devices, the development of methods to solve the associated

electromagnetic-field problems has received a great deal of

attention in the past two decades, Such electromagnetic

boundary value problems, with the exception of isotropic

waveguides, require a formulation in which the electric

and magnetic fields are treated as vector quantities. In

recent years, a. variety of methods for the solution of

homogeneous isotropic waveguide problems appeared in

the literature; these have been reviewed by Wexler [1],

by Davies [2], and by Ng [3]. With a few exceptions [4]-

[9], [29], the tendency in recent years was to formulate

the inhomogeneous isotropic waveguide problem in terms

of the longitudinal electric (,!?,) and magnetic (HZ) field

components [10]–[1 8].

As noted by Wexler [1] in 1969, there have been many

proponents and only a few attempts to formulate electro-
magnetic-field problems in terms of all three components

of the field vectors. Among the, attempts one must mention
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Barrington’s well-known monograph [4] and Gupta’s

doctoral dissertation [5] on field solution in resonant

cavities filled with an inhomogeneous anisotropic medium.

The moment method employed by these authors is es-

sentially a projective method in which the field components

in a cavity or waveguide are expanded in terms of the field

components of the empty cavity or waveguide modes.

In 1967 Hannaford [10] proposed an extension of his

variational/finite difference method for homogeneous

isotropic waveguides to plasma- and ferrite-filled wave-

guides. Hannaford’s proposal involves only the longitudinal

field components. For inhomogeneous media, the resulting

coefficient matrix in Hannaford’s formulation becomes

indefinite above the 45° “air-line” cm the dispersion diagram.

Since 1967, this shortcoming of two-component formula-

tions has reoccurred in a number of other finite-difference

and finite-element variational methods [11]–[1 7]. Hanna-

ford dismissed Berk’s often quoted variational expressions

which were published in 1956 [6] as being more complicated

than the EZ-HZ formulation. Berk derived three- and six-

component vector variational expressions in the form of

Rayleigh quotients for the resonance frequencies of a

resonator filled with loss-free, anisotropic, homogeneous

or inhomogeneous media.

The only three-component vector variational formula-

tion for electromagnetic-field problems appearing in recent

years is due to English and Young [7]. They select the
E-field formulation over H on the basis of the number of

Dirichlet boundary conditions to be satisfied. The authors

list the advantages of the three-component vector formula-

tion as reduced matrix size and denser coefficient matrices

in comparison with the six-component formulation given

by English in his doctoral dissertation [8] andin two papers

by English [9], [23] which appeared in 1971. However,



554 IESSTRANSACTIONS ON MICROWAVS THSORY ANo TECHNIQUES, SRPTSMRER1976

they find that the resulting matrix elements are more com-

plicated to calculate, the guide-wall boundary conditions

on the trial functions are more restrictive, and the imposition

of continuity constraints on the trial field components is

less straightforward. English and Young apply their method

to inhomogeneously filled isotropic parallel-plate wave-

guides and to rectangular waveguides. Unfortunately, in

their three-component formulation the condition n x

E = O must be satisfied exactly by the trial functions, so

that waveguide shapes other than circular or rectangular

cannot be treated.

It is evident from the foregoing survey of the literature

that the need for a general three-component vector varia-

tional formulation of loss-free, bounded electromagnetic-

field problems has long been recognized. This semitutorial

paper contains a unified three-component vector variational

formulation of electromagnetic fields not only for isotropic

media, but for homogeneous and inhomogeneous aniso-

tropic waveguide and resonator problems as well. The

variational expressions derived in this paper are independent

of the method chosen for discretization (e.g., finite dif-

ferences, finite elements). The discussion on boundary

conditions and uniqueness highlights the advantages as

well as some of the shortcomings of vector variational

formulations in general and the vector variational formula-

tion of the inhomogeneous waveguide problem in particular.

It is shown, for example, that the occurrence of nonphysical

(spurious) solutions in vector variational formulations is

due to a larger than expected set of natural boundary

conditions.

11. TI-IR CURLCURL EQUATION

Consider Maxwell’s curl equations for time-harmonic

fields [19]

curl E = –jcoB (2.1)

curl H = +jcoD + J. (2.2)

The vectors E and H are the electric- and magnetic-field

intensities and the vectors D and B are the electric- and

magnetic-flux densities, respectively. J denotes current

density and it includes impressed currents (Ji) as well as

induced conduction currents (J.).

Let @and 8 represent the tensor permeability and tensor

permittivity, respectively. By substituting constitutive

relationships for linear media in (2.1) and (2.2), taking curl

of both sides, and then substituting for curl H from (2.2)
and for curl E from (2.1), the following equations are

obtained for nonconductive media:

curl @-1 curl E) – C02.4E= –j~Ji (2.3)

curl ($- 1 curl H) – co2~H = curl (8- l~i). (2.4)

In a conductive medium, the conduction current JC

causes a magnetic field H to appear. If J= is the only current
flowing, then (2.2) gives

curl H = J= (2.5)

which can be rewritten in terms of the magnetic vector

potential A as

curl (@- 1 curl A) = J.. (2.6)

The aim of the following sections of this paper is to

present a unified variational formulation for problems

involving the Maxwell equations for nonconductive media

expressed as (2.3) or (2.4) and the magnetic vector potential

expressed as (2.6) in bounded regions. These three equations

are special cases of the following general equation’ depend-

ing on the interpretation of ~, ~, V, and g: ~

curl (~ curl V) - CD24V = –g. (2.7)

The differential operator in this equation is self-adjoint

provided that ~ and ~ are Hermitian and therefore lends

itself readily to a variational formulation [20].

IIL FUNCTIONAL FORMULATION

According to the Minimum Theorem [27] the vector

function V which satisfies the curlcurl equation (2.7)

minimizes an energy-related functional given by

F(v) = <curl (p curl P),v) – co2(@,v) + <g,v) + (v,g).

(3.1)

In view of the fact that the electric- and magnetic-field

intensities vary harmonically with time, and therefore have

both magnitude and phases, the following inner product

should be used

<a,b) =
JJJ

(b* . a) dU. (3.2)

a

The asterisk here denotes complex conjugate. With this

definition of inner product, the functional can be rewritten

as

F(v) =
Jll

[v* . curl (f curl v)] dU

n

+ M(V* . g) dU +
JJJ

(g* . v) dU. (3.3)

s-l $-1

Consider now the following vector identity:

div(axb) =(curla) .b-a. curlb. (3.4)

Integrating both sides and then applying the divergence

theorem to the left-hand side yields

JJ(a x b). dS.=
JJJ

[(curl a). b – a . curl b] dU.
r Q

(3.5)

With a replaced by v* and b replaced by (f curl v) one

obtains

J!l
[v” . cm-l (j curl v)] dU

a

. M[curl (v”) . (j curl v)] dU

n

—
R“

[v* x (p curl v)]. n dS (3.6)
r
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which is merely the application of

in vector form. Now substituting

obtains
,.*”

F(v) =
Ill

[(curl v)* “ (fi curl v)] dU tion of F will be zero provided that the following equations
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Green’s first identity At this point one could easily ask: How does one know

(3.6) into (3.3) one if the functional (3.11) is correct? If the integrand of the

volume integral part of the functional F’(v) is denoted by L,

then according to the calculus of variations, the first varia-

.ldtl

c1

— (32/![(V* “@) dU

Q

+
JJJ

(v*. g+g*”v)dU

Q

—
if

[v* x (j curl v)] “ n dS. (3.7)
r

By denoting the components of the vectors g, v, and curl v

by gi, ~i, and (curl v)~, i = 1,2,3, and the components of
the tensors @and tj by pi,j and q.~,j>i,j = 1,2,3, respectively,
one can rewrite the functional in the following form:

F(v) = ~
JJJ[

Pi,il(curlv)i12+ Pi,i+I(curl V)Y(curlV)i+ 1
icl

o

+ Pi+ I,i(curl V)i(curl ~)?+ 1 - ‘2(~i,ilui12

+ ~i,i+ 10i*Vi+ 1 + ~i+ l,ioiv~+ 1)

1+~i*gi+gi*~idU

ff[

3

+$’ Ii z (Pi+l,j”?+2
i=l ~ j=l

1–~i+z,ju?+,)(curlV)joZJdS. (3.8)

The subscripts in (3.8) are cyclic modulo 3. The unit vector

in the ith coordinate direction is denoted by lti The volume

integral is defined over some volume Q bounded by a

surface r. The unit vector n is outward normal everywhere

to the surface I’.

For loss-free passive media the material property tensors

# and ~ are always Hermitian. Consequently, the following

relations hold true [20]:

~i,i+ l“i*oi+ 1 + fli+ l,i”iu?+ 1 = 2 Re (qi+ ,,iU~+lOi) (3.9)

are satisfied:

i {()}
a2L dL=—, i = 1,2,3. (3.12)

‘=1 t?aj a ~ avi
J

These equations are referred to as the Euler equations

associated with the Lagrangian L [21]. The aj represent

spatial coordinates. It has been verified that (3.12) reduces

(3.1 1) to the curlcurl equation.

IV. BOUNDARY CONDITIONS

Let v represent the electric-field intensity E. Then

#curl v = ji”l curl E = –jdl (4.1)

and the surface integral term in the functional (3.7) can be

written as

—
H

[v* x (~ curl v)] “ n dS = j~
JJ

(E* X H) o n dS.
r r

(4.2)

The cross product E* x H is the well-known complex

Poynting vector representing the density of power flux.

Therefore, the surface integral represents the net power

flow across the boundary surface. If the boundary r is a

perfect conductor, then no energy is transferred and the

Poynting vector is tangential everywhere to the surface.

Mathematically, this idea is expressed by the equation

[v* x (j curl v)] on = O. (4.3)

The boundary conditions that are implicitly enforced

by leaving out the surface integral from the functional, i.e.,

that correspond to the choice given by (4.3), are called the

natural boundary conditions of the functional [22]. It is

a well-known property of scalar triple products that they

remain unchanged under a cyclic permutation of three

vectors. Thus one can write the following equalities:
Pi,i+ I(curl v)Kcurl ‘)i+ I + Pi+ l,i(curl V)i(curl V)T+ I

= 2 Re [pi+ ,,i(curl v);+ ,(curl V)i],

Therefore, the functional in (3.8) can be rewritten

following way:

+ 2 Re [pi+ ~,i(curl V)?+~(curl v)i]

— ~2[qi,il Ui12 + 2 Re (qi+ l,iv~*+lUi)]

1
+ 2 Re (giVi*) dU

1
– Pi+z,jv?+,)(curl v)j “ n dS.

... .

[v* x (P curl v)]. n = [(P curl v) x n] “ v“
(3.10)

= (n x v*) o(j curl v). (4.4)
in the

It will now be shown that the boundary conditions implicit

in (4.3) are exactly the same as those commonly encountered

in electromagnetic-field problems.

Let v represent the electric field E again. Then by (4.4)

it is obvious that (4.3) will be satisfied whenever

nxE=nx. K1 curl H = O on ~. (4.5)

Now, let v represent the magnetic field H. Then, again by

virtue of (4.4) it can be seen that (4.3) will be satisfied

whenever (4.5) is true. The boundary condition expressed

in (4.5) is the one commonly used for perfect electric

conductors [19]. It merely states that the electric-field

intensity vector E must be normal everywhere at the
‘3”11) boundary, without specifying the magnitude of 1?.
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The boundary condition given by

nxH=”nx@–l curl E=O on r (4.6)

is equally correct and satisfies (4.3), but it is only meaning-

ful if one accepts the idea of perfect magnetic conductor.

This is defined as a material for which H must be normal

everywhere at its surface. i

The boundary conditions (4.5) and (4.6) can also be

obtained in terms of the magnetic vector potential A.

For perfect electric conductors one can write

nxE=nx A= Oonr (4.7)

while for perfect magnetic conductors one obtains

nxH=nxfl-l curl A = O on r. (4.8)

The conditions of the type (~ curl v) x n = O result in

three impedance-type boundary conditions; i.e., constraints

on the normal derivatives of each component of v [20].

These are natural boundary conditions of the functional

when the surface integral is set to zero and will be auto-

matically satisfied by the function which minimizes the

functional. In other words, one does not need to restrict

the set from which the function v is taken. Boundary

conditions such as the ones implicit in (4.7) have, of course,

to be taken care of explicitly.

One question in connection with boundary conditions

remains unanswered: Are they sufficient to guarantee a

unique solution? The answer to this question is not at all

obvious since one is dealing with vector quantities. At

least one well-known textbook on electromagnetic theory

states that two conditions must be specified for a vector

function [28].

V. UNIQUENESS

It will now be shown that the boundary conditions given

in (4.5)–(4.8) for perfect electric or magnetic conductors

do indeed guarantee unique solutions to the curlcurl

equation (2.7), [24]. Suppose that two distinct solutions

exist for the same boundary value problem and denote

them by 1’1 and ~z. Electromagnetically, VI and ~z could

be either electric-field intensity vectors or magnetic-field

vectors. It is required that the curls of the two solutions be

equal so that VI and ~z both have the same volume sources.

Due to the linear nature of the curl operator the difference

solution VJ = VI – ~z also satisfies (2.7), but with a
vanishing source term, Moreover, the curl of ~~ is zero.

The energy norm of the vector field ~ will be defined by

the following integral

Ilvll = [JJJV* oqvdu]”z (5.1)

where the integration is over a volume f2 bounded by a

surface ~. The norm of P’ as given by (5,1) is a number
assigned to V which is in the energy sense a measure of the

magnitude of V. The vector function V belongs to a linear

1In many practical problems where symmetry exists, the planes of
/ symmetry will behave like perfect magnetic conductors.

space S. The norm given in (5.1) is valid provided that the

following conditions are met:

1) ha]\ 20, aES;

2) Ilcall = Iclllall, where c is any real number;

3) Ila + bll < I[all + IIbll (triangleinequality),b~S;

4) hall = O, implies a - 0.

If the 3-by-3 nonsingular Hermitian matrix representing

the material property tensor ~ is positive definite, then the

Hermitian form [V]*[q][V] is strictly positive for all

nontrivial [~]. This is the only requirement needed to

meet the four aforementioned conditions. Permittivity

and permeability tensors of passive media are all positive-

definite 3-by-3 matrices.

One would like to find the conditions under which the

square of the energy norm of Vd vanishes. If the energy

norm is zero then by property 4) Vd itself will be zero

“almost everywhere.”z By substituting for ~ Vd from the

curlcurl equation and then using Green’s first identity in

vector form [see (3.6)], the energy norm of Vd can be

transformed as follows:

“n.

= (1/co2) I I I Vd* o[curl (fl curl V,)] dU
JJJ

.
(1/c02) ~~~ [curl (v,”) -(f curl VJ] dU

Q

- (1/0’) g [V,* x (f curl ~~)] . n dS. (5.2)
r

The volume integral over C2vanishes because the curl of Vd

is zero within the volume. In order to make the surface

integral vanish one requires that the integrand be zero

[V,* x (@ curl V,)] “ n = O. (5.3)

This is true whenever either

nxvd=o (5.4)

or

n x (f curl Vd) = O. (5.5)

Obviously, if VI and Vz both satisfy either of these con-

ditions at the boundary surface, then Vd also satisfies them
and (5.2) is equal to zero. Therefore, VI and Vz are one

and the same unique solution of the curlcurl equation. Note

that the proof breaks down when the frequency w is zero.

Unfortunately, the energy norm of Vd may also vanish

when neither (5.4) nor (5.5) is satisfied. In such cases, the

-surface integral over r vanishes over the boundary surface

as a whole. Physically, such a situation requires a surface

through which energy transfer is possible, but the net

energy transferred must be zero. It is this condition which

causes “spurious,” “nonphysical” modes to appear in

variational solution of waveguide problems [11], [13]–[17].

2 “Almost everywhere” implies everywhere except on a denumerable
subset of Q such as the surface r.
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To overcome the problem of spurious solutions, one must
ensure that the surface integral in the functional (3.11)
vanishes’ only under conditions of the type (5.4) or (5.5).
In a three-component H-field formulation this amounts

to asking that B be everywhere tangential to perfect electric

conductors. The enforcement of the condition n. B = O

guarantees that n o(curl E) = O; i.e., that curl E will be

tangential to the boundary surface. This in turn guarantees
that E will be normal to the boundary, and hence that

n x .$-1 curl H = O. In a three-component E-field formula-

tion the condition n “ D = O must be enforced at perfect

magnetic conductors. It is not more difficult to enforce the

conditions n” B = O or n “ D = O than it is to enforce the

condition nxE=Oornx H =0.

The situation is quite different for the magnetic vector

potential A. The boundary conditions given in (4.7) and

(4.8) @ terms of A for perfect electric and magnetic con-

ductors, respectively, guarantee that the electric and

magnetic fields E and H derived from the solution of (2.6)

will be unique. However, unless the divergence of A is

somehow fixed, A itself is not unique. If the Coulomb

convention is adopted, the divergence of A will be zero

and (2.6) will be reduced to the vector Poisson equation.

Even so, the solution will not be unique if only the boundary

condition n x ji– 1 curl A == O is applied to all parts of

the boundary.

VI. SUMMARY AND THE EXPLICIT FORMS OF THE

FUNCTIONAL

If a region of space is bounded by a perfect electric

conductor with no magnetic currents flowing on ‘its surface,

i.e., if n x E is zero, then (2.3) can be solved for the vector

E by using the boundary condition n x E = O. The cor-

responding vector H can be obtained for the same problem

by solving (2.4) with the boundary condition n x

i?–1 curl H = O. The electric current induced on the surface

of the perfect electric conductor can be obtained by evaluat-

ing n x H. The induced electric surface charge density is

given by n “ (SE).

If the boundary of the region behaves like a perfect

magnetic conductor with no electric current flowing on its

surface, i.e., if n x H is zero, then (2.4) can be solved for

the magnetic-field vector H by using the boundary con-

dition n x H = O. The corresponding vector E can be

obtained for the same problem by solving (2.3) with the

boundary condition n x &1 curl E. The magnetic current

induced on the surface of the perfect magnetic conductor

is given by n x E. The induced fictitious magnetic surface

charge density is given by n” (~H).

If the boundary consists partly of a perfect electric

conductor and partly of a perfect magnetic conductor,

then the vector E can be obtained by solving (2.3) with the

boundary condition n x E = O on the electric conductor

and with the bowy condition n x 11-1 curl E = O on

the magnetic con$uctor. The corresponding vector H is

obtained by solving (2.4) with the boundary condition

n x .2-1 curl H = O where the electric conductor is

located and with the boundary condition n x H = O

where the magnetic conductor is found.

The solutions are unique in all of the previous cases.

For an abrupt discontinuity in the permittivity 8 in an

inhomogeneous medium there is an abrupt change in the

electric field E as well. In such cases, it is advantageous to

solve for the magnetic field from (2.4). Similarly, for an,.
inhomogeneous medium with discontinuities in the perme-

ability @, H’ displays discontinuities and it is easier to solve

for E from (2.3) than for H from (2.4). The simultaneous

occurrence of both types of inhomogeneities is rare:

The solution of the curlcurl equation is achieved by

minimizing the associated functional. The three impedance-

type boundary conditions implicit in (# curl v) x n = O

are natural if the surface integral is neglected from the

functional. For the boundary condition n x v = O, which

must be taken care of explicitly, the surface integral still

vanishes. Without the surface integral, the functional given

in (3.11) takes on the following form in rectangular co-

ordinates (x,y,z):

avz* a~y + ~y avy*

ay az az a.z-)

(au. avx*
+ Pyy

avx aOz*—— .— .—
az a.z a2 ax

aVx* avz + ~z avz*—— —
az dx ax 8X-)

(*Y avy* avy avx*
+ p== —

ax 8X – ax ay

avy* avx + au, avx*

ax ay ay ay,)

( . ZVY avx*au= au *
+ 2Pyx

ay az az a2

avz dVz* ~ avy avz*

‘Fax dz ax,)

(avz* ~y _ avy* $
+ 2pzx*, — —

ay ax a2 ax

avz* au. ~ avy* avx

ay ay az ay )

(

avx dvy* avz avy*
-Fzpzy ~~–——

ax ax

au. avx* + & avx”—
az ay ax ay–)

— (I)2(Q)XVX* + qyyvyvy* + q.,v,vz * + 2qy.v.vy*

+ 2qzx*vzvx* + 2Qzy~yvz*)

+ 2(gxvx* + 9YVY* 1+gzv,*) dx dy dz. (6.1)
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In cylindrical coordinates (r,O,z), the functional

is given by

‘(”)‘MR’[4%3%-*M
auz* avo + ~ av~ avO*.— —

)
——

ae aZ az az

(

au, avr* avr avz*
+p@or ——–——

az az az h

avr* avz
+

a= avz*

a.z tw h i% )

(

ave avO*
+PZZ r——

avo
+ve*z+

h ar

vov~* avr avo* avr* avo
-l—— —–——

r ‘%i?r ae ik”

V8*av, + av, av,*

)
.— —— —

r ae r ao ao

(

, , r&avr*av av *
+ 2per

ao a.2 az az

az

avO*

‘o th

VOavr*

‘Yae
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(3.il)

avzg + r aveavz*
‘jFar a.2 & )

(

avz* avo + V. avz*
+2pz,* —— –-

ae h r ae

avo*avo avo* avz*
—r— az~-ve 8Z ‘r~g

q+ avo*av,

de –)az Z

(+Zpze r & avo” av
—+ve*~–vo*-#

az tb

_ r ~ avO* avr av,* avz av,*——. —
h i?r az ao – dr ae )

. co2r(q,,v,v,* -i- qo@vOvO*+ qzZvzvz* + 2qOrv,vO*

+ 2q=,*vzv,* + 2qz#@z*)

1+2r(g,v,* + g@vO*+ gzvz*) dr dz d6. (6.2)

Notice the factor I/r in some of the terms in the integrand

of (6.2). The singularity at r = O ii potentially troublesome

as far as the integration is concerned. However, the limit

of the terms with the I/r singularity as r tends to zero is

indeterminate; this suggests that l’Hospital’s rule can be

applied. Thus the limits of these quantities are finite,

suggesting that the singularity can be integrated [20];

[25], [26], [30]: Notice also that unlike in” EZ-HZ

formulations ~10]–[18], there are no singularities with

respect to the material property tensors in the functional

derived here. Moreover, it is evident that the integrands of

(6, 1) and (6.2) are real quantities provided that the tensors

are Hermitian.

I

VII. CONCLUSIONS

A unified three-component vector variational forrnula-

ticm has been presented for time-harmonic electromagnetic

fields in loss-free, anisotropic media. An energy-related

functional has been derived for the curlcurl equation and

the associated natural boundary conditions have been

examined in detail in the context of uniqueness. The ap-

parent advantages of the ‘formulation are’ the following.

1) Generality: It is valid for homogeneous or inhomo-

geneous, isotropic or anisotropic, loss-free media.

2) The impedance-type boundary conditions at perfect

conductors are natural boundary conditions. The derived

functional is suitable both for finite-difference and for

finite-element discretization without special restrictions on

the trial functioni.

3) The formulation does not give rise to singularities

with respect to the material properties of the medium such

as encountered in EZ–HZ formulations for inhomogeneous

media.

In this formulation, the, occurrence of the so-called

spurious, nonphysical modes is predictable. They are

unique solutions which do ,not satisfy the electromagnetic

boundary conditions’ at perfect conductors. A treatment to

elifinate such solutions has been suggested.
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A Perturbation Method for the Analysis of Wave
Propagation in Inhomogeneous Dielectric

Waveguides with Perturbed Media
MASAHIRO HASHIMOTO, MEMBER, IEEE

Abstract—This paper presents a perturbation method for determining
the modes and the propagation constants of TE and TM waves in in-
homogeneeus dielectric waveguides whose index distributions depart

from well-known profiles; e.g., a parabolic profile for which exact

solutions can be obtained. Applying the variable-transformation tech-

nique to the wave equations, the wave-equation problem is transformed

into the related-equation problem. The approximate solutions of the

wave equations are obtained solving the related equation, The method

is applied to the analysis of lower order mode propagation in a near-
parabolic-index medium. The first-order field functions and the second-
order propagation constants are given.

I. INTRODUCTION

T

HE PROBLEM of studying the behavior of electro-

magnetic waves in inhomogeneous media has been of

great interest chiefly from mathematical and physical

standpoints [1]-[6]. Later a number of methods [7]-[10]

were developed to analyze this problem or the equivalent

quantum-mechanics problem, most of which are based on

the asymptotic expansion method [11] analogous to the

Wentzel [3]-Kramers [6]-Brillouin [4], [5] (WKB)

method, and these methods have been found to be very

useful for weak inhomogeneities.
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Recently, a great variety of refractive-index distributions

were used to realize self-focusing optical waveguides. Some

of these distributions are not weakly inhomogeneous; the

index variations within the distance of a wavelength are

relatively rapid. In applying such media to single or quasi-

single mode waveguides, it is necessary to analyze the

propagation characteristics of lower order modes by

suitable methods.

Kurtz and Streifer [8] have applied McKelvey’s asymp-

totic method [7] to the problem of lower order mode

propagation, and have found the solutions inaccurate

near the center axis of the waveguide. Even if higher order

asymptotic approaches are taken into account, it is im-

possible to improve the accuracy of the solutions near the

center axis [1 1]. To avoid this defect, many authors [12]

have used the variational method with the aid of a com-

puter. However, computational labor will be required for

the straightforward calculations [13], [14].

In this paper, an analytic method is presented to deter-

mine the transverse field functions and the propagation

constants of TE and TM waves subjected to lower order
mode propagation in inhomogeneous media. The method

is based on two techniques. The one is the variable-trans-

formation technique initially presented in nonuniform

transmission-line problems by Berger [15] and later trans-

ferred to the equivalence problem of lenslike media by

Yamamoto and Makimoto [16]. The other is the related


