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Vector Variational Formulation of
Electromagnetic Fields in
Anisotropic Media

A. KONRAD, MEMBER, IEEE

Abstract—Maxwell’s equations can be cast into a basic differential
operator equation, the curlcurl equation, which lends itself easily to
variational treatment. Various forms of this equation are associated
with problems of practical importance. The formulation includes the
treatment of loss-free anisofropic media. The boundary conditions
associated with electromagnetic-field problems are treated in detail and
the uniqueness of the solution is discussed. A functional is derived for
the curlcurl equation in Cartesian and cylindrical coordinates.

I. INTRODUCTION

UE TO the broad variety of practical applications

of waveguides, resonators, and other microwave
devices, the development of methods to solve the associated
electromagnetic-field problems has received a great deal of
attention in the past two decades. Such electromagnetic
boundary value problems, with the exception of isotropic
waveguides, require a formulation in which the electric
and magnetic fields are treated as vector quantities. In
recent years, a-variety of methods for the solution of
homogeneous isotropic waveguide problems appeared in
the literature; these have been reviewed by Wexler [1],
by Davies [2], and by Ng [3]. With a few exceptions [4]-
[91, [29], the tendency in recent years was to formulate
the inhomogeneous isotropic waveguide problem in terms
of the longitudinal electric (E,) and magnetic (H,) field
components [10]-[18].

As noted by Wexler [1] in 1969, there have been many
proponents and only a few attempts to formulate electro-
magnetic-field problems in terms of all three components
of the field vectors. Among the attempts one must mention
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Harrington’s well-known monograph [4] and Gupta’s
doctoral dissertation [5] on field solution in resonant
cavities filled with an inhomogeneous anisotropic medium.
The moment method employed by these authors is es-
sentially a projective method in which the field components
in a cavity or waveguide are expanded in terms of the field
components of the empty cavity or waveguide modes.

In 1967 Hannaford [10] proposed an extension of his
variational/finite difference method for homogeneous
isotropic waveguides to plasma- and ferrite-filled wave-
guides. Hannaford’s proposal involves only the longitudinal
field components. For inhomogeneous media, the resulting
coefficient matrix in Hannaford’s formulation becomes
indefinite above the 45° ““air-line” on the dispersion diagram.
Since 1967, this shortcoming of two-component formula-
tions has reoccurred in a number of other finite-difference
and finite-element variational methods [11]-[17]. Hanna-
ford dismissed Berk’s often quoted variational expressions
which were published in 1956 [6] as being more complicated
than the E~H, formulation. Berk derived three- and six-
component vector variational expressions in the form of
Rayleigh quotients for the resonance frequencies of a
resonator filled with loss-free, anisotropic, homogeneous
or inhomogeneous media.

The only three-component vector variational formula-
tion for electromagnetic-field problems appearing in recent
years is due to English and Young [7]. They select the
E-field formulation over H on the basis of the number of
Dirichlet boundary conditions to be satisfied. The authors
list the advantages of the three-component vector formula-
tion as reduced matrix size and denser coefficient matrices
in comparison with the six-component formulation given
by English in his doctoral dissertation [8] and‘in two papers
by English [9], [23] which appeared in 1971. However,
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they find that the resulting matrix elements are more com-
plicated to calculate, the guide-wall boundary conditions
on the trial functions are more restrictive, and the imposition
of continuity constraints on the trial field components is
less straightforward. English and Young apply their method
to inhomogeneously filled isotropic parallel-plate wave-
guides and to rectangular waveguides. Unfortunately, in
their three-component formulation the condition n X
E = 0 must be satisfied exactly by the trial functions, so
that waveguide shapes other than circular or rectangular
cannot be treated.

It is evident from the foregoing survey of the literature
that the need for a general three-component vector varia-
tional formulation of loss-free, bounded electromagnetic-
field problems has long been recognized. This semitutorial
paper contains a unified three-component vector variational
formulation of electromagnetic fields not only for isotropic
media, but for homogeneous and inhomogeneous aniso-
tropic waveguide and resonator problems as well. The
variational expressions derived in this paper are independent
of the method chosen for discretization (e.g., finite dif-
ferences, finite elements). The discussion on boundary
conditions and uniqueness highlights the advantages as
well as some of the shortcomings of vector variational
formulations in general and the vector variational formula-
tion of the inhomogeneous waveguide problem in particular.
It is shown, for example, that the occurrence of nonphysical
(spurious) solutions in vector variational formulations is
due to a larger than expected set of natural boundary
conditions.

II. Tae CURLCURL EQUATION

Consider Maxwell’s curl equations for time-harmonic
fields [19]

curl E = —joB 2.1)

2.2)

The vectors E and H are the electric- and magnetic-field
intensities and the vectors D and B are the electric- and
magnetic-flux densities, respectively. J denotes current
density and it includes impressed currents (J;) as well as
induced conduction currents (J,).

Let /i and & represent the tensor permeability and tensor
permittivity, respectively. By substituting constitutive
relationships for linear media in (2.1) and (2.2), taking curl
of both sides, and then substituting for curl H from (2.2)
and for curl E from (2.1), the following equations are
obtained for nonconductive media:

curl (™! curl E) — 0*E = —joJ;
curl (37! curl H) — «?*4iH = curl (¢7J).

curl H = +joD + J.

24

In a conductive medium, the conduction current J,
causes a magnetic field H to appear. If J, is the only current

flowing, then (2.2) gives
' curl H = J, 2.5

which can be rewritten in terms of the magnetic vector
potential A4 as

curl (™! curl 4) = J.. 2.6

2.3)
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The aim of the following sections of this paper is to
present a unified variational formulation for problems
involving the Maxwell equations for nonconductive media
expressed as (2.3) or (2.4) and the magnetic vector potential
expressed as (2.6) in bounded regions. These three equations
are special cases of the following general equation’ depend-
ing on the interpretation of p, 4, ¥, and g:

curl (p curl ¥) — 0?qV = —g. .7

The differential operator in this equation is sélf-adjoint
provided that p and 4 are Hermitian and therefore lends
itself readily to a variational formulation [20].

ITI. FUNCTIONAL FORMULATION

According to the Minimum Theorem [27] the vector
function ¥V which satisfies the curlcurl equation (2.7)
minimizes an energy-related functional given by

F(v) = <curl (p curl v),»> — 0®gv,pd + {gv> + (v, g>.

' 3.D
In view of the fact that the electric- and magnetic-field
intensities vary harmonically with time, and therefore have

both magnitude and phases, the following inner product
should be used

{a,h) = fff(b* -a) dU.
2

The asterisk here denotes complex conjugate. With this
definition of inner product, the functional can be rewritten
as

(3.2)

F(v) = ff [v* - curl (p éurl v)] dU
Q
- 0? fi o* - gv) dU

+fi (v*-g)dU+fﬂ(y*-v)du. (3.3

Consider now the following vector identity:
div(a x ) = (curl@)- b — a-curl b. (B34

Integrating both sides and then applying the divergence
theorem to the left-hand side yields

ﬁ (@ x b)-dS .= fff[(cgrl a)-'b — a-curlt b] dU.

(3.5

With a replaced by »* and b replaced by (p curl v) one
obtains

ff [v* - curl (p curl v)] dU
o
= f f [curl (v*) - (p curl v)] dU

- g I* x (pourl ]-ndS (3.6
r
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which is merely the application of Green’s first identity
in vector form. Now substituting (3.6) into (3.3) one
obtains

F) = ff [(curl v)* - (p curl v)] dU

—sz fff(v* - gv) dU
2

+J‘f O0* g+ g*-v)dU

_ ﬁ [v* x (powrlv)]-ndS.  (3.7)

By denoting the components of the vectors g, v, and curl v
by g;, v;, and (curl v);, i = 1,2,3, and the components of
the tensors p and g by p; ; and ¢; ;, i,j = 1,2,3, respectively,
one can rewrite the functional in the following form:

3
F(v) = 2 p;il(curl Wil? 4+ piea(curl v)f(curl v),, 4
i=1 J;[J [

+ pirsdeurl v)curl v)f, ~ wZ(Qi,i,UiIZ

%* %
+ Gii+tVi Vi1 t Gig 1,004 1)

+ v*g; + gi*vi] au
3 3

+ Z [li Z (pi+1,jU;k+2
i=1 r j=1

— Diya, Vi 1)(curl v)j] -n dS. (3.8

The subscripts in (3.8) are cyclic modulo 3. The unit vector
in the ith coordinate direction is denoted by 1,. The volume
integral is defined over some volume Q bounded by a
surface I'. The unit vector n is outward normal everywhere
to the surface T".

For loss-free passive media the material property tensors
p and § are always Hermitian. Consequently, the following
relations hold true [20]:

Quis 10 Ve 1 + Qv 0051 = 2 Re (g4 1,075 0 (3.9)
Dii+1(curl vi(eurl ¥);yy + pis 1,{curl v)(curl ");k+1
= 2 Re [ p;.q,(curl v)i (curl )],  (3.10)

Therefore, the functional in (3.8) can be rewritten in the
following way:

F(v) = 123:1 fff {pi,i](curl vl
Q

+ 2 Re [ pyy (eurl v y(curl v),]
— @?[qiilvl® + 2 Re (qi41,05% 10)]

+ 2 Re (givi*)} au
3 3

+ Z g [li 2 (Pi+1,jU?‘+2
i=1 r j=1

— Piya,07 )curl v)j] -nds. (3.11)
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At this point one could easily ask: How does one know
if the functional (3.11) is correct? If the integrand of the
volume integral part of the functional F(v) is denoted by L,
then according to the calculus of variations, the first varia-
tion of F will be zero provided that the following equations
are satisfied:

3 2
$ (L)oo
=1 Y6a; 0 (gi) oo,

a;

1,23, (3.12)

These equations are referred to as the Fuler equations
associated with the Lagrangian L [21]. The a; represent
spatial coordinates. It has been verified that (3.12) reduces
(3.11) to the curlcurl equation.

IV. BouNDARY CONDITIONS
Let v represent the electric-field intensity E. Then

peurly = i~ tcurl E = —joH 4.1

and the surface integral term in the functional (3.7) can be
written as

—ﬁ [v* x (pcurl v)] - ndS =jcoff (E* x H)-ndsS.
r r
(4.2)

The cross product E* x H is the well-known complex
Poynting vector representing the density of power flux.
Therefore, the surface integral represents the net power
flow across the boundary surface. If the boundary I' is a
perfect conductor, then no energy is transferred and the
Poynting vector is tangential everywhere to the surface.
Mathematically, this idea is expressed by the equation

[»* x (pecurl v)]-n = 0. 4.3

The boundary conditions that are implicitly enforced
by leaving out the surface integral from the functional, i.e.,
that correspond to the choice given by (4.3), are called the
natural boundary conditions of the functional [22]. It is
a well-known property of scalar triple products that they
remain unchanged under a cyclic permutation of three
vectors. Thus one can write the following equalities:

[v¢ x (pecurl v)]-n = [(pcurly) x n]-v*

=@ x v¥) - (pcurly). (44

It will now be shown that the boundary conditions implicit
in (4.3) are exactly the same as those commonly encountered
in electromagnetic-field problems.

Let v represent the electric field E again. Then by (4.4)
it is obvious that (4.3) will be satisfied whenever

nx E=nxétlcawrl H=0 on [I. 4.5

Now, let v represent the magnetic field H. Then, again by
virtue of (4.4) it can be seen that (4.3) will be satisfied
whenever (4.5) is true. The boundary condition expressed
in (4.5) is the one commonly used for perfect electric
conductors [19]. It merely states that the electric-field
intensity vector E must be normal everywhere at the
boundary, without specifying the magnitude of E.
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The boundary condition given by

nxH=nx g 'culE=0 on T

(4.6)

is equally correct and satisfies (4.3), but it is only meaning-
ful if one accepts the idea of perfect magnetic conductor.
This is defined as a material for which H must be normal
everywhere at its surface.* :

The boundary conditions (4.5) and (4.6) can also be
obtained in terms of the magnetic vector potential A,
For perfect electric conductors one can write

nXE=nxA4=0 on I 4.7

while for perfect magnetic conductors one obtains

nxH=nxf'culd=0 on I. 4.8)

The conditions of the type (p curl v) x n = 0 result in
three impedance-type boundary conditions; i.e., constraints
on the normal derivatives of each component of v [20].
These are natural boundary conditions of the functional
when the surface integral is set to zero and will be auto-
matically satisfied by the function which minimizes the
functional. In other words, one does not need to restrict
the set from which the function v is taken. Boundary
conditions such as the ones implicit in (4.7) have, of course,
to be taken care of explicitly.

One question in connection with boundary conditions
remains unanswered: Are they sufficient to guarantee a
unique solution? The answer to this question is not at all
obvious since one is dealing with vector quantities. At
least one well-known textbook on electromagnetic theory
states that two conditions must be specified for a vector
function [28].

V. UNIQUENESS

It will now be shown that the boundary conditions given
in (4.5)-(4.8) for perfect electric or magnetic conductors
do indeed guarantee unique solutions to the curlcurl
equation (2.7), [24]. Suppose that two distinct solutions
exist for the same boundary value problem and denote
them by ¥V, and V,. Electromagnetically, ¥; and ¥V, could
be either electric-field intensity vectors or magnetic-field
vectors. It is required that the curls of the two solutions be
equal so that ¥, and ¥V, both have the same volume sources.
Due to the linear nature of the curl operator the difference
solution ¥V, = V; — ¥V, also satisfies (2.7), but with a
vanishing source term. Moreover, the curl of ¥, is zero.

The energy norm of the vector field ¥ will be defined by
the following integral

wi = [ [[[re-avau]™

where the integration is over a volume Q bounded by a
surface I". The norm of ¥V as given by (5.1) is a number
assigned to ¥V which is in the energy sense a measure of the
magnitude of V. The vector function ¥ belongs to a linear

5.1)

! In many practical problems where symmetry exists, the planes of
symmetry will behave like perfect magnetic conductors.
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space S. The norm given in (5.1) is valid provided that the
following conditions are met:

D) [a] = 0, acsS;

2) [lcall = |c|llal,  where ¢ is any real number;
3) lla + b|| < |la| + |b] (triangle inequality),
4) |la] =0, implies @ = 0.

beS;

If the 3-by-3 nomnsingular Hermitian matrix representing
the material property tensor § is positive definite, then the
Hermitian form [V ]*[¢][V] is strictly positive for all
nontrivial [V]. This is the only requirement needed to
meet the four aforementioned conditions. Permittivity
and permeability tensors of passive media are all positive-
definite 3-by-3 matrices.

One would like to find the conditions under which the
square of the energy norm of ¥V, vanishes. If the energy
norm is zero then by property 4) V, itself will be zero
“almost everywhere.”? By substituting for §4¥, from the
curlcurl equation and then using Green’s first identity in
vector form [see (3.6)], the energy norm of ¥, can be
transformed as follows:

ffj‘ V- (qVy) dU
= (1/w?) Jff v, « [eurl (p curl ¥,)] dU

= (1/w?) Jff [curl (V,*) - (p curl ¥,)] dU

- (1/w?) ﬁ [V,* x (peurl ¥)] - ndS. (5.2)
r

The volume integral over Q vanishes because the curl of ¥V,
is zero within the volume. In order to make the surface
integral vanish one requires that the integrand be zero

[Vt x (peurl V)] -n = 0. (5.3)
This is true whenever either
nx V,=0 5.9
or
n x (pcurl ¥y = 0. (5.5)

Obviously, if ¥, and ¥, both satisfy either of these con-
ditions at the boundary surface, then ¥, also satisfies them
and (5.2) is equal to zero. Therefore, V; and ¥V, are onc
and the same unique solution of the curlcurl equation. Note
that the proof breaks down when the frequency w is zero.

Unfortunately, the energy norm of ¥, may also vanish
when neither (5.4) nor (5.5) is satisfied. In such cases, the

“surface integral over I vanishes over the boundary surface

as a whole. Physically, such a situation requires a surface
through which energy transfer is possible, but the net
energy transferred must be zero. It is this condition which
causes ‘“‘spurious,” ‘“‘nonphysical”” modes to appear in
variational solution of waveguide problems [11], [13]-[17].

2 “Almost everywhere” implies everywhere except on a denumerable
subset of Q such as the surface I
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To overcome the problem of spurious solutions, one must
ensure that the surface integral in the functional (3.11)
vanishes only under conditions of the type (5.4) or (5.5).
In a three-component H-field formulation this amounts
to asking that B be everywhere tangential to perfect electric
conductors. The enforcement of* the condition n+ B = 0
guarantees that »- (curl E) = 0; i.e., that curl E will be
tangential to the boundary surface. This in turn guarantees
that E will be normal to the boundary, and hence that
n x ¢! curl H = 0. In a three-component E-field formula-
tion the condition n+D = O must be enforced at perfect
magnetic conductors. It is not more difficult to enforce the
conditions n- B = 0 or n- D = 0 than it is to enforce the
conditionn x E=0orn x H = 0. '

The situation is quite different for the magnetic vector
potential A. The boundary conditions. given in (4.7) and
(4.8) in terms of A for perfect electric and magnetic con-
ductors, respectively, guarantee that the electric and
magnetic fields £ and H derived from the solution of (2.6)
will be unique. However, unless the divergence of 4 is
somehow fixed, A itself is not unique. If the Coulomb
convention is adopted, the divergence of 4 will be zero
and (2.6) will be reduced to the vector Poisson equation.
Even so, the solution will not be unique if only the boundary
condition n x fi~!curl 4 = 0 is applied to all parts of
the boundary.

VI. SUMMARY AND THE EXPLICIT FORMS OF THE
FuncrioNAL

If a region of space is bounded by a perfect electric
conductor with no magnetic currents flowing on its surface,
i.e., if n x Eis zero, then (2.3) can be solved for the vector
E by using the boundary condition n x E = 0. The cor-
responding vector H can be obtained for the same problem
by solving (2.4) with the boundary condition n x
¢~ ' curl H = 0. The electric current induced on the surface
of the perfect electric conductor can be obtained by evaluat-
ing n x H. The induced electric surface charge density is
given by n - (8E).

If the boundary of the region behaves like a perfect
magnetic conductor with no electric current flowing on its
surface, i.e., if n x H is zero, then (2.4) can be solved for
the magnetic-field vector H by using the boundary con-
dition 2 x H = 0. The corresponding vector E can be
obtained for the same problem by solving (2.3) with the
boundary condition n x f~! curl E. The magnetic current
induced on the surface of the perfect magnetic conductor
is given by n x E. The induced fictitious magnetic surface
charge density is given by »n - (iH).

If the boundary consists partly of a perfect electric
conductor and partly of a perfect magnetic conductor,
then the vector E can be obtained by solving (2.3) with the
boundary condition # x E = O on the electric conductor
and with the bou:ﬁg:lary condition n x fi~ Lcurl E = 0 on
the magnetic conﬁuctor The corresponding vector H is
obtamed by solvmg (2.4) with the boundary condition
nx & tcurl H=0 where the electric conductor is
located and with the boundary condition n x H = 0
where the magnetic conductor is found.
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The solutions are unique in all of the previous cases.

For an abrupt discontinuity in the permittivity & in an
inhomogeneous medium there is an abrupt change in the
electric field E as well. In such cases, it is advantageous to
solve for the magnetic field from (2.4). Similarly, for an
inhomogeneous medium with discontinuities in the perme-
ability i, H displays discontinuities and it is easier to solve
for E from (2.3) than for H from (2.4). The simultaneous
occurrence of both types of inhomogeneities is rare.

The solution of the curlcurl equation is achieved by
minimizing the associated functional. The three impedance-
type boundary conditions implicit in (pcurl v) x n =0
are natural if the surface integral is neglected from the
functional. For the boundary condition n x v = 0, which
must be taken care of explicitly, the surface integral still
vamshes Without the surface integral, the functional given
in (3.11) takes on'the followmg form in rectangular co-
ordinates (x,y,2):

: ov, 0v,*  ov, av
FO) = | [{Re |pe (222 — 2280
®) fff [p (6y oy oy 0z
S, o)
oy 0z 0z 0z

0z 0z 0z Ox
Lt )
0z dx 0x 0x
(2
Ox 0x ox 0y
2o duc)
oy 0y

_ ot o,
ox 0oy

+2 (___3_"5”
i Jdy 0z 0z 0z

60 60)

_ 6 6u
6y 6y
ov, 60 ov, 61)
+ 2 - (_ —r - =
Y\oz ox

+ 6_2 avx)
dz 0Oy

_ oo oy

o, )
oz 0y

ox dy

2 * P * *
— @ (Qxxvxvx + g,y + .00, + 2qyxvxvy

+ 2. 0,0 + 2q.,00.%)

+ Agwt + gt + g,v,*)] dxdydz.  (6.1)
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In cylindrical coordinates (r,0,2), the functional (3.11)
is given by

dv, dv,*  0Ov, Ovp*
F@) = R —= =z =0
® H e[p’ (rao 30 20 oz
i o)
80 0z 0z 0z
| ov, ov,*

oz or

_a%+@@)
0z Or _6r or

.t

r o6 or a6 or
vt 00, v 00_)
r 06 rod 00

(60 on* _ r%av_,*
20 0z _62 0z

2 207)
dz or

ou, 30

or or " or T ar

_ o oo
a0 or

ov* ov
+ 2 zr* (—z' -2 +
P \36 or
dve* _ 0v,* v, | Ov* dv, )
0z r o0 00 dz 00

« 0D, « OV,

0z or

ov, (?v,*)
or 00

r 00

_ 00 dvp* Ovy
0z or

Vg ——
v, 208
62 or

5v ov,*
0r or

+ 2on (r 6

ov, dv,*
0z - 00

2 ko & # *
- r(qrrvrvr + GoqVel + q2:0:0;" + 2€lorl7r”o

+ zq”*pzvr* + 24:91’015:*)

+ 2r(gw* + gove* + gzv,*)] dr dz df. 6.2)
Notice the factor 1/r in some of the terms in the integrand
of (6.2). The singularity at r = 0 is potentially troublesome
as far as the integration is concerned However, the limit
of the terms with the 1/r smgularlty as r tends to zero is
indeterminate; this suggests that I"Hospital’s rule can be
applied. Thus the limits of these quantities are finite,
suggesting that the singularity can be integrated [20];
[25], [26], [30]: Notice also that unlike in E,-H,
formulations [10]-[18], there are no singularities with
respect to the material property tensors in the functionals
derived here. Moreover, it is evident that the integrands of
(6.1) and (6.2) are real quantities provxded that the tensors
are Hermitian. ‘
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VIL CONCI;USIONS I

A unified three-component vector variational formula-
tion Has been presented for time-harmonic electromagnetic
fields in loss-free, anisotropic media. An energy-related
functional has been derived for the curlcurl equation and
the associated natural boundary conditions have been
examined in detail in the context of uniqueness. The ap-
parent advantages of the formulation are the following.

1) Generality: It is valid for homogeneous or inhomo-
geneous, isotropic or anisotropic, loss-free media.

2) The impedance-type boundary conditions at perfect
conductors are natural boundary conditions. The derived
functional is suitable both for finite-difference and for
finite-element discretization without special restrictions on
the trial functions. ‘ ‘

3) The formulation does not give rise to singularities
with respect to the material properties of the medium such
as encountered in E~H, formulauons for mhomogeneous
media.

In this formulation, the occurrence of the so-called
spurious, nonphysical modes is predictable. - They are
unique solutions which do not satisfy the electromagnetic
boundary conditions at perfect conductors. A treatment to
elithinate such solutions has been suggested.
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A Perturbation Method for the Analysis of Wave
Propagation in Inhomogeneous Dielectric
Waveguides with Perturbed Media

MASAHIRO HASHIMOTO, MEMBER, IEEE

Abstract—This paper presents a perturbation method for determining
the modes and the propagation constants of TE and TM waves in in-
homogeneous dielectric waveguides whose index distributions depart
from well-known profiles; e.g., a parabolic profile for which exact
solutions can be obtained. Applying the variable-transformation tech-
nique to the wave equations, the wave-equation problem is transformed
into the related-equation problem. The approximate solutions of the
wave equations are obtained solving the related equation. The method
is applied to the analysis of lower order mode propagation in a near-
parabolic-index medium. The first-order field functions and the second-
order propagation constants are given. '

I. INTRODUCTION

HE PROBLEM of studying the behavior of electro-

magnetic waves in inhomogeneous media has been of
great interest chiefly from mathematical and physical
standpoints [1]-[6]. Later a number of methods [7]-[10]
were developed to analyze this problem or the equivalent
quantum-mechanics problem, most of which are based on
the asymptotic expansion method [11] analogous to the
Wentzel [3]-Kramers [6]-Brillouin [4], [5] (WKB)
method, and these methods have been found to be very
useful for weak inhomogeneities.
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Recently, a great variety of refractive-index distributions
were used to realize self-focusing optical waveguides. Some
of these distributions are not weakly inhomogeneous; the
index variations within the distance of a wavelength are
relatively rapid. In applying such media to single or quasi-
single mode waveguides, it is necessary to analyze the
propagation characteristics of lower order modes by
suitable methods.

Kurtz and Streifer [8] have applied McKelvey’s asymp-
totic method [7] to the problem of lower order mode
propagation, and have found the solutions inaccurate
near the center axis of the waveguide. Even if higher order
asymptotic approaches are taken into account, it is im-
possible to improve the accuracy of the solutions near the
center axis [11]. To avoid this defect, many authors [12]
have used the variational method with the aid of a com-
puter. However, computational labor will be required for
the straightforward calculations [13], [14].

In this paper, an analytic method is presented to deter-
mine the transverse field functions and the propagation
constants of TE and TM waves subjected to lower order
mode propagation in inhomogeneous media. The method
is based on two techniques. The one is the variable-trans-
formation technique initially presented in nonuniform
transmission-line problems by Berger [15] and later trans-
ferred to the equivalence problem of lenslike media by
Yamamoto and Makimoto [16]. The other is the related



